# POSTULATES OF QUANTUM MECHANICS

## **Dr. Pradeep Samantaroy**

Department of Chemistry Rayagada Autonomous College, Rayagada pksroy82@gmail.com; pksroy82@yahoo.in 9444078968

The physical state of a system at time t is described by the wave function  $\Psi$  (x, t).

The wave function  $\Psi$  (x, t) and its first and second derivative

must satisfy the following conditions:

Finite

Continuous

Single valued

Must satisfy the ortho-normal condition

#### **Ortho-normal Condition**

**Considering one dimension:** 

$$\int_{-\infty}^{\infty} |\psi(x)|^2 dx = \int_{-\infty}^{\infty} \psi^*(x)\psi(x)dx = 1$$

**Considering three dimension:** 

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\psi(x, y, z)|^2 dx dy dz = 1$$

Normalized condition:

$$\int |\psi|^2 \, d\tau = \int \psi^* \psi d\tau = 1$$

**Orthogonal condition:** 

$$\int \psi_j^* \psi_k d\tau = 0$$

Orthonormal condition:

$$\psi_j^*\psi_k d\tau = \delta_{jk}$$

$$\delta_{jk} = \begin{cases} 0, \ j \neq k \\ 1, \ j = k \end{cases}$$



#### Which if the following are acceptable functions:

A physically observable quantity can be represented by a

Hermitian operator.

An operator  $\hat{A}$  is said to be Hermitian if it satisfies the following condition.

$$\int \Psi_i^* \hat{A} \Psi_j dx = \int \Psi_j (\hat{A} \Psi_i)^* dx$$

Where  $\Psi_i$  and  $\Psi_j$  are wave functions representing the physical states of quantum systems.

The allowed values of an observable A are the eigenvalues, a<sub>i</sub>, in the operator equation

$$\mathbf{\hat{A}}\mathbf{\Psi}_{i} = \mathbf{a}_{i}\mathbf{\Psi}_{i}$$

Where

 is the operator  $\Psi_i$  is the eigen function  $a_i$  is the eigen value An eigen function is for an operator  $d^2/dx^2$  is  $\Psi = e^{2x}$ . Find the corresponding eigen value.  $d^2/dx^2$  ( $e^{2x}$ ) =  $d/dx \{d/dx (e^{2x})\}$ =  $d/dx (2. e^{2x})$ = 2. 2.  $e^{2x}$ = 4  $e^{2x}$ 

The average value/expectation value of A i.e. <A>, corresponding to Â, is obtained from the relation

$$< A > = \int_{-\infty}^{\infty} \Psi^* \hat{A} \Psi dx$$

The quantum mechanical operators corresponding to the observables are constructed by writing the classical expression in terms of the variable and converting the expressions to the operators.

| Classical<br>variable | Quantum<br>mechanical operator | Operator                                   | Operation                                                                |
|-----------------------|--------------------------------|--------------------------------------------|--------------------------------------------------------------------------|
| x                     | ^<br>x                         | x                                          | Multiplication by x                                                      |
| <i>P</i> <sub>x</sub> | $\hat{p}_x$                    | $-i\hbar \frac{\partial}{\partial x}$      | Taking derivative with respect to $x$ and multiplying by $-i\hbar$       |
| x <sup>2</sup>        | x <sup>2</sup>                 | x <sup>2</sup>                             | Multiplication by $x^2$                                                  |
| $p_x^2$               | $\hat{p}_x^2$                  | $-\hbar^2 \frac{\partial^2}{\partial x^2}$ | Taking second derivative with respect to x and multiplying by $-\hbar^2$ |
| 1                     | î                              | î                                          | Multiplying by t                                                         |
| E                     | Ê                              | $i\hbar \frac{\partial}{\partial t}$       | Taking derivative with respect to $t$ and multiplying by $i\hbar$        |