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Oscillation 
Periodic Variation 

Any oscillation that can be expressed with a sinusoidal function is a harmonic 
oscillation. 
 
x(t) = x0 cos ( ωt + φ) 
 
Where   x0 is the amplitude 
  t is the time 
  ω is the angular frequency  
  φ is the phase angle 
  (ωt + φ) is the phase 
 
The vibrational frequency of the oscillator of mass m is given by  
 
For a diatomic molecule   
 
Where µ is the reduced mass of diatomic molecule.  
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Let’s understand the case…! 

According to Hooke’s law, the force acting on the molecule is given by 
    f = -kx 
Where x is the displacement and k is the force constant.  
The Hooke’s law potential energy V(x) can be written as 
 
 
 

This is the equation of parabola. 
Thus if we plot potential energy of a 
particle executing simple harmonic 
oscillations as a function of 
displacement from the equilibrium 
position, we get a curve like this.  

        0 
   ← x → 

En
e

rg
y V(x) = ½kx2 

Prepared by Dr. Pradeep Samantaroy 



Let’s solve the case…! 

Using the potential energy now the Schrodinger’s equation for the 
one dimensional simple harmonic oscillator can be represented as  
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Mathematically this equation can be rearranged as  
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Let’s solve the case…! 

The force constant in SHO is given by k = mω2 

Substituting the value of k, the equation becomes 
 
 
 
 
Defining a new variable ξ and a new parameter λ 
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When ξ is very large λ-ξ2 ≈ -ξ2 
So the equation becomes   

 
 
 
 
 
 
 
 

02

2

2

 




d

d

 2/exp)( 2 x

The solutions to the above equation are 

Out of the two asymptotic solutions exp ξ2/2 is not acceptable 
since it diverges when |ξ| →∞ 
Thus the exact solution can be written as  
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Substituting the solution the following equation, 
 
 
 
 
The equation becomes   
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This is the Hermite Equation and the solution will give Hermite 
polynomials.  
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Substituting the above equation in previous equation 
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When the coefficient of ξ is equated to zero we obtain the recurrence relation: 
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The unnormalized wave function of one dimensional SHO is written as  

Soving this the value of normalization constant will be 
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ENERGY 

The series can be terminated choosing λ in such  a way that 
(2k+1-λ) vanishes for k = n. 
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n = 0,1,2,3,4… 

Prepared by Dr. Pradeep Samantaroy 



DIAGRAMS 
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